
Categorical Speech Representation in the Human Superior Temporal Gyrus 
Edward F. Chang, Jochem W. Rieger, Keith Johnson, Mitchel S. Berger, Nicholas M. 
Barbaro, Robert T. Knight 

SUPPLEMENTAL INFORMATION 

Derivation of neuronal identification functions 

Our approach to derive neuronal identification functions was inspired by a widely 

accepted definition of categorical perception (Harnard, 1987) which states that stimuli 

perceived as belonging to the same category are judged as perceptually more similar 

than stimuli belonging to a different category. Neuronal responses linked to categorical 

perception should show an analogous property: Responses to pairs of stimuli from within 

a perceptual category should be less distinguishable than responses to between 

category pairs. These considerations imply that in order to directly compare neuronal 

responses to categorical perception the neuronal responses must be transformed to a 

similarity metric as a first step. In this similarity based representation we then derived 

neuronal response classes and neuronal class prototypes. Finally, we used the neuronal 

class prototypes to calculate neuronal identification functions which were directly 

comparable to the psychophysically measured identification functions. 

 

Confusion matrices 

Confusion matrices provide information about the dissimilarity of neuronal responses 

elicited by pairs of stimuli, comparable to distance tables between cities provided in road 

maps.  
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We used single trial classification to measure the pair wise dissimilarities , ,  at 

different time intervals  to fill the confusion matrices . In this approach, neuronal 

response dissimilarity is measured as the proportion of correct single trial classifications 



of brain responses obtained with a specific pair of stimuli. Higher entries in the confusion 

matrix indicate larger distances between pairs of brain responses in the dissimilarity 

space we aim to derive.  

 

Classification 

We estimated pair wise dissimilarities , ,  using an L1-norm regularized logistic 

regression classifier (Koh et al, 2007) applied to the time series data in a leave-one-trial-

out cross validation procedure. L1-norm logistic regression is well suited for 

classification problems involving high dimensional feature spaces and relatively few 

examples for training because it does not overfit easily when the ratio of training data 

samples to feature space dimensions is low (for a discussion see e.g. Koh et al., 2007). 

Overfitted classifiers achieve only low prediction rates on new data in cross-validation 

tests and would therefore lead to unstructured dissimilarity matrices with similar entries. 

We used the time series data for classification because they contain all information 

available in the data and hence require no prior hypothesis about what features of the 

neuronal response could be important for categorical neuronal coding in STG. Since we 

had no prior assumption about the time when categorical neuronal responses occur, we 

derived neuronal confusion matrices in steps of 10 ms from 40 ms long intervals. The 

40 ms time window was a compromise between temporal resolution and the 

dimensionality of the feature space. The full feature space included up to 16002 

dimensions (63 channels * 254 time samples), whereas the 40 ms included only up to 

1260 dimensions (63 channels * 20 time samples).  

In the cross-validation loop both feature selection and classifier training was performed 

on a subset of 1 trials (leave-one-out cross validation). In the feature selection 

step we discarded those samples in the time series that did not exhibit any indication of 

difference between two stimulus conditions. This first univariate feature selection was 

done by calculating for each sample a t-value over stimulus repetitions (indicated by the 

‘.’) 
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and discarding those samples that did not pass a liberal criterion of | , ,  |   . 

The criterion was chosen individually to maximize the classifier’s peak classification 

performance. However, the optimal criterion was very similar among participants (P1:  2.5, P2: 2.0,  P3:  2.0, P4:  2.0 . The samples that survived 

this initial selection were assembled for each single trial in a feature vector  holding a 

total of  features (samples). These lower dimensional feature vectors were used for 

classification. 

The classifier’s logistic model is: 
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Here, 1,1  denotes the class a trial belongs to,  is an intercept, and 0 

defines the separating hyperplane. The optimization problem solved in L1 norm 

regularized logistic regression is to minimize: 

1  1 | | 
The additive term controls, via the regularization parameter , the sparseness of the 

decision subspace by penalizing non-zero entries in , the normal vector on the 

decision hyperplane. The L1 norm optimization of the classifier's decision hyperplane 

sets the weights of a large number of less informative features to zero, thereby 

excluding them from the solution. As a consequence, the actual classification is 

performed in an informative subspace of much lower dimensionality than the original 

data space. This regularization can be understood as a second feature selection step (t-



value feature selection was the first) that helps to prevent overfitting the classifier to the 

training set. The regularization parameter  was held fixed at 0.1. 

The single left out trial  was classified with the optimized  and  in: 

 

This procedure was repeated  times and the proportion of correctly classified trials was 

used as the estimate of the dissimilarity , ,  of the neuronal responses to a given 

stimulus pair in a given interval.  To further increase the ratio of the number of examples 

to the number of features we combined the neurophysiological measurements of 

adjacent stimuli (e.g. 1&2; 2&3 etc.) yielding a total of 4 100 trials used per 

dissimilarity estimate , , . Note that labels in the figures of the main paper list only the 

first stimulus in these combined sets of trials. With respect to the goal of our analysis 

combining responses to adjacent stimuli could smooth category boundaries somewhat. 

Multidimensional scaling 

In the next step we applied metric multidimensional scaling (MDS) to the confusion 

matrices averaged over subjects. MDS is a method for embedding objects, in our case 

neuronal responses, in a low dimensional Euclidian space such that distances between 

the objects reproduce an empirical matrix of dissimilarities, in our case , as well as 

possible. MDS has been suggested to be useful in psychophysical research to analyze 

categorical perception (Shepard, 1980), and has subsequently been used to study e.g. 

face perception  (Bimler & Kirkland, 2001) and the perception of phonetic stimuli 

(Shepard, 1980, Iverson & Kuhl, 1995). The objective in MDS is to minimize the 

reconstruction error measured by Kruskall Stress (Kruskall & Wish, 1978): 
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The  , ,  are the neuronal response dissimilarities classification revealed for stimulus 

pairs , and  in interval . The , ,  are the corresponding distances between 

responses in the Euclidian embedding constructed by MDS. The summation is over 13 

responses because responses to adjacent stimuli were pooled, as noted above. The 

MDS embedding was calculated in three dimensions. This choice was based on a priori 

considerations of how many dimensions would be maximally required. If the neuronal 

responses in STG parallel the perceptual domain, comprising three phonemes, then 

three dimensions should be sufficient for MDS to construct a configuration of responses 

reflecting the pairwise dissimilarities. Moreover, in the case that neuronal responses 

reflect the linear physical variation of the speech stimuli a single dimension should 

already suffice to reconstruct the linear configuration. Supplemental figure 1 shows 

residual Kruskal Stress as a function of the number of dimensions in the two the two 

consecutive intervals 110 ms - 150 ms, and 120 ms - 160 ms after phoneme onset. The 

reconstruction should exceed 90% correspondence with the original dissimilarities 

(stress ≤ 0.1, Kruskal & Wish, 1978). This criterion is reached using three dimensions. 

This more formal analysis confirms that our a priori choice was adequate. The MDS 

reconstructions for the critical time intervals between 110 ms and 160 ms result in stress 

values of 0.066 (110 ms to 150 ms), and 0.068 (120 ms to 160 ms).  

  

Supplemental figure 1. Residual stress at two intervals plotted as a function of the 
number of dimensions included in the MDS solution. Three dimensions are 
sufficient to obtain a solution with residual stress < 0.1. 

 

K-means clustering 
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The simultaneous representation of all neuronal responses in on common similarity 

space allowed us to use cluster analysis (Shepard, 1980) to test when, if at all, neuronal 

responses group in a way that parallels perceptual grouping obtained psychophysically. 

We used K-means clustering because it implements the definition of categorical 

perception. K-means finds a partitioning of the data into k cluster that minimizes the 

within cluster sum of squares: 

 

Because overall variance is constant, the between cluster variance is simultaneously 

maximized. Here, k is the pre-defined number of clusters, is the position of the 

neuronal response elicited by stimulus  in the MDS-representation, and  is the center 

of gravity of cluster . The obvious choice for the number of expected clusters was 

three, the number of perceived phonemes.  We used the K-means algorithm 

implemented in matlab (The Mathworks Inc.) which requires as an additional restriction 

that each cluster must hold at least one neuronal response. Supplemental figure 2 

shows the correspondence between the psychophysically obtained stimulus clusters and 

the cluster assignments obtained with K-means for the analysis time series. The two 

consecutive intervals from 110 ms to 150 ms, and from 120 ms to 160 ms, were the only 

where the psychophysically obtained categories and those derived from the neuronal 

responses were in exact correspondence. Supplemental figure 3 shows the full time 

series of MDS and K-means solutions in the same format as in the main manuscript.  

 
0 50 100 150 200

0

2

4

6

8

interval start [ms]

# 
of

 c
lu

st
er

in
g 

er
ro

rs



Supplemental figure 2. Only the neuronal responses in the intervals starting 110 
ms and 120 ms after phoneme onset were classified exactly the way predicted by 
the psychophysical identification function. This is indicated by zero classification 
errors in these intervals.  The probability for obtaining zero errors by chance is 
p<10-6.  

Supplemental figure 3. The full time series of MDS- and K-means solutions. The 
first two eigenvariates are shown. 

 

Neuronal identification functions and correlation analysis 

Cluster analysis is concerned with category membership but the results of it allowed us 

to calculate continuous neuronal identification functions analogous to psychophysical 



identification function. In our approach, we assume that participants compare stimulus 

percepts to phoneme prototypes in the identification task, and assign them to the most 

similar one. In this sense, the psychophysical identification function represents a 

measure of the distance between the phoneme prototypes and the stimulus percept. To 

derive the three neuronal identification functions we calculated three distance functions 

in MDS similarity space, one between each of the three cluster prototypes and all 

neuronal responses. These functions let us directly compare neuronal and 

psychophysical responses on a continuous scale. Supplemental figure 4 shows the time 

course of the mean of the correlations between the neuronal and psychophysical 

functions. Again, a clear peak is visible for the intervals between 110 ms to 150 ms, and 

120 ms to 160 ms. During these intervals the correlations are excellent and average to 

0.94 further corroborating our suggestion that stimuli along the /ba/-/da/-/ga/ continuum 

are categorically coded in the population response of posterior STG neurons.  

 

Supplemental figure 4. Time course of mean correlations of neuronal and 
psychophysical identification functions.  

 

Reconstruction of informative electrodes 

The trained classifier’s weight vector quantifies the amount information each feature 

provides for classification. Highly informative features receive higher weights and 

features providing little or no information receive low or zero weights in the sparse 
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classifier we employed. Features with zero entries in the weight vector do not contribute 

to the classification results. This can be easily seen in the decision function:  

  
 

which can be written as: 

 

The feature weights shown in Figure 3 (main manuscript) represent  w  averages over 

cross validation results and samples per electrode in the analysis interval. The average 

feature weights represent an estimate of how informative an electrode was judged by 

the classifier. Thus, the channels highlighted in Figure 3 can be considered as those 

providing most reliable information for discriminating the stimuli presented.   
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